3.194 \(\int \frac{\sec ^3(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\)

Optimal. Leaf size=74 \[ \frac{\sin (e+f x)}{2 f (a+b) \left (-a \sin ^2(e+f x)+a+b\right )}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right )}{2 \sqrt{a} f (a+b)^{3/2}} \]

[Out]

ArcTanh[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]/(2*Sqrt[a]*(a + b)^(3/2)*f) + Sin[e + f*x]/(2*(a + b)*f*(a + b - a
*Sin[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0703302, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4147, 199, 208} \[ \frac{\sin (e+f x)}{2 f (a+b) \left (-a \sin ^2(e+f x)+a+b\right )}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right )}{2 \sqrt{a} f (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

ArcTanh[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]/(2*Sqrt[a]*(a + b)^(3/2)*f) + Sin[e + f*x]/(2*(a + b)*f*(a + b - a
*Sin[e + f*x]^2))

Rule 4147

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^
((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n
/2] && IntegerQ[p]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (a+b-a x^2\right )^2} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sin (e+f x)}{2 (a+b) f \left (a+b-a \sin ^2(e+f x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{a+b-a x^2} \, dx,x,\sin (e+f x)\right )}{2 (a+b) f}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right )}{2 \sqrt{a} (a+b)^{3/2} f}+\frac{\sin (e+f x)}{2 (a+b) f \left (a+b-a \sin ^2(e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.304015, size = 88, normalized size = 1.19 \[ \frac{\sqrt{a} \sqrt{a+b} \sin (e+f x)+\left (-a \sin ^2(e+f x)+a+b\right ) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right )}{\sqrt{a} f (a+b)^{3/2} (a \cos (2 (e+f x))+a+2 b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]

[Out]

(Sqrt[a]*Sqrt[a + b]*Sin[e + f*x] + ArcTanh[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]*(a + b - a*Sin[e + f*x]^2))/(S
qrt[a]*(a + b)^(3/2)*f*(a + 2*b + a*Cos[2*(e + f*x)]))

________________________________________________________________________________________

Maple [A]  time = 0.068, size = 68, normalized size = 0.9 \begin{align*}{\frac{1}{f} \left ( -{\frac{\sin \left ( fx+e \right ) }{ \left ( 2\,a+2\,b \right ) \left ( -a-b+a \left ( \sin \left ( fx+e \right ) \right ) ^{2} \right ) }}+{\frac{1}{2\,a+2\,b}{\it Artanh} \left ({\sin \left ( fx+e \right ) a{\frac{1}{\sqrt{ \left ( a+b \right ) a}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) a}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x)

[Out]

1/f*(-1/2*sin(f*x+e)/(a+b)/(-a-b+a*sin(f*x+e)^2)+1/2/(a+b)/((a+b)*a)^(1/2)*arctanh(a*sin(f*x+e)/((a+b)*a)^(1/2
)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.546575, size = 601, normalized size = 8.12 \begin{align*} \left [\frac{{\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt{a^{2} + a b} \log \left (-\frac{a \cos \left (f x + e\right )^{2} - 2 \, \sqrt{a^{2} + a b} \sin \left (f x + e\right ) - 2 \, a - b}{a \cos \left (f x + e\right )^{2} + b}\right ) + 2 \,{\left (a^{2} + a b\right )} \sin \left (f x + e\right )}{4 \,{\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}, -\frac{{\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt{-a^{2} - a b} \arctan \left (\frac{\sqrt{-a^{2} - a b} \sin \left (f x + e\right )}{a + b}\right ) -{\left (a^{2} + a b\right )} \sin \left (f x + e\right )}{2 \,{\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} +{\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

[1/4*((a*cos(f*x + e)^2 + b)*sqrt(a^2 + a*b)*log(-(a*cos(f*x + e)^2 - 2*sqrt(a^2 + a*b)*sin(f*x + e) - 2*a - b
)/(a*cos(f*x + e)^2 + b)) + 2*(a^2 + a*b)*sin(f*x + e))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b +
 2*a^2*b^2 + a*b^3)*f), -1/2*((a*cos(f*x + e)^2 + b)*sqrt(-a^2 - a*b)*arctan(sqrt(-a^2 - a*b)*sin(f*x + e)/(a
+ b)) - (a^2 + a*b)*sin(f*x + e))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b + 2*a^2*b^2 + a*b^3)*f)
]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**3/(a+b*sec(f*x+e)**2)**2,x)

[Out]

Integral(sec(e + f*x)**3/(a + b*sec(e + f*x)**2)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.33044, size = 107, normalized size = 1.45 \begin{align*} -\frac{\frac{\arctan \left (\frac{a \sin \left (f x + e\right )}{\sqrt{-a^{2} - a b}}\right )}{\sqrt{-a^{2} - a b}{\left (a + b\right )}} + \frac{\sin \left (f x + e\right )}{{\left (a \sin \left (f x + e\right )^{2} - a - b\right )}{\left (a + b\right )}}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")

[Out]

-1/2*(arctan(a*sin(f*x + e)/sqrt(-a^2 - a*b))/(sqrt(-a^2 - a*b)*(a + b)) + sin(f*x + e)/((a*sin(f*x + e)^2 - a
 - b)*(a + b)))/f